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Abstract. A variety of causal, particular and homoge-
neous solutions to the time-independent wavepacket
Schrédinger equation have been considered as the basis
for calculations using Chebychev expansions, finite-t
expansions obtained from a partial Fourier transform of
the time-dependent Schrédinger equation, and the dis-
tributed approximating functional (DAF) representation
for the spectral density operator (SDO). All the approx-
imations are made computationally robust and reliable
by damping the discrete Hamiltonian matrix along the
edges of the finite grid to facilitate the use of compact
grids. The approximations are found to be completely
well behaved at all values of the (continuous) scattering
energy. It is found that the DAF-SDO provides a
suitable alternative to Chebychev propagation.
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1 Introduction

The fundamental equation in nonrelativistic quantum
mechanics is the time-dependent Schrédinger equation
(TDSE)
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where |y(¢)) is the ket vector describing the scattering
system. The formal solution to this equation (for H
independent of time), namely,

1Ht
[1(6) = exp (= =) [x(0)) (2)

where |x(0)) describes the initial state of the system, is
the starting point for many time-dependent approaches
[1-4]. It is also well known that the complete (—oo to
+00) time-to-energy Fourier transform of Eq. (1) for
energies in the continuum gives rise to the homogeneous,
time-independent Schrédinger equation (TISE) [5],
which along with its integral (Lippmann—Schwinger,
LS) [6] form has been the ‘workhorse’ equation of
scattering calculations in physics and chemistry.

It has been shown that the time-to-energy transform
of Eq. (2) produces a scattering eigenstate of the TISE
obeying causal boundary conditions if the coordinate
representation wavefunction, (F|x(0)), is ‘precollisional’
[7-11]. By this is meant that V(¥)(F|x(¢)) is (effectively)
zero over all coordinate space for all times ¢ < 0. Here,
V(¥) is the scattering potential. That is, the wavepacket
has not encountered the scattering potential in its pre-
history. The Fourier components of (7|y(0)) at energy E
determine the appropriate boundary conditions. (Like-
wise, if (7|y(0)) is ‘postcollisional’, the time-to-energy
transform of Eq. (2) produces a solution to the TISE
that obeys anticausal boundary conditions.)

It is only recently that ‘half’-Fourier time-to-energy
transforms have been exploited in quantum scattering
[7-11] (which is somewhat surprising since they have
long been used for the quantum Liouville/Von Neumann
equation [12, 13] in statistical mechanics [14, 15]). The
half-Fourier transform of Eq. (2), integrating from ¢ = 0
to oo, gives rise to the state vector

) = g 1O )

where (E* — H) ' is the causal Green function. Since the
ket vector, |¢T), explicitly depends on the initial vector,
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%(0)), which in the coordinate representation is the
initial wavepacket, Eq. (3) is termed the time-indepen-
dent wavepacket (TIW) equation [7-11]. Although |&")
is not a scattering eigenstate, it turns out that it does
have a very simple physical interpretation if |x(0)) is
precollisional [7-11]. More important, all relevant
scattering information can be extracted from [¢1) at
energies contained in the initial wavepacket, |x(0)). In
fact |¢*) has exactly the same scattering information
content as the improper eigenket resulting from the
full time-to-energy Fourier transform, as should be no
surprise since the integral from ¢ = 0 to oo includes all
times that the packet overlaps the potential. Similarly,
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where (E~ — H)™ ' is the anticausal Green function and
l%(0)) is postcollision, has the information content of the
corresponding anticausal eigenstate, and is obtained
from the half-Fourier transform of Eq. (2), integrating
from ¢t = 0 to —oo. Both of these TIW kets are clearly
particular solutions of the inhomogeneous time-inde-
pendent wavepacket Schrodinger equation (TITWSE),

(E = H)[E) = [2(0)) . ()

The general solution to this inhomogeneous equation is
[16, 17]

1€) = G (E)[2(0)) + 2(E — H)|1(0)) (6)

where / is an arbitrary constant, G (E) is the principal
value of the Green function and 6(E — H) is the spectral
density operator (SDO). The ket vector GF(E)|%(0)) is
a particular solution and 6(E — H)|x(0)) is the solution
to the homogeneous equation (the TISE). From the
well-known expression [16]

G*(E) = G*(E) F mmd(E — H) (7)

it is clear that Egs. (3) and (4) are, indeed, special cases
of Eq. (6). Related methods based on these equations
have been used by several other groups recently for
scattering calculations [18-20].

Equations (3) and (4) have an important advantage
over the LS equation for extracting scattering informa-
tion, namely, all of the exphcn energy dependence is in
the Green function (E* — H) - By contrast, in the LS
equation the scattered wave is given by (E* — H)~ V|¢>
where |¢) is an eigenstate of (H — V) at energy E. Thus,
in the LS equation there is an additional explicit energy
dependence in |¢), whereas, in Eq. (3), the causal Green
function acts on the same ket vector, |y(0)), at all
energies.

In this article, we consider various approximate
solutions to a novel TIWSE, which is derived from a
partial-finite Fourier transform of the TDSE. Approxi-
mate solutions to the standard TIWSE are also consid-
ered, with the basic approximation being the replacement
of the exact, continuous Hamiltonian with a finite-di-
mensional, discrete matrix. To obtain reliable results, it is
crucial that the ‘box’ introduced to discretize and truncate
the Hamiltonian be large enough that interference effects
produced by scattering at the boundaries be controllably
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small in the region where the final state analysis is carried
out. Furthermore, in all cases, the action of the relevant
dynamical operator (which is a function of the finite,
discrete Hamiltonian matrix) on an initial wavepacket is
approximated in terms of only a subset of the eigenstates
of the finite, discrete Hamiltonian matrix. All calculations
are made more robust by the introduction of damping to
facilitate the use of smaller, more compact boxes [19]. The
accuracy and computational effectiveness of the approx-
imations are studied for a one-dimensional scattering
problem, by calculating scattering information for a wide
range of energies, including energies that are exactly equal
to eigenvalues of the discrete Hamiltonian matrix.

The article is organized as follows. In Sect. 2 we
consider various generalizations of, and formal solutions
to, the TIW quantum equations, based on partial-finite
Fourier transforms of the TDSE. In Sect. 3 we present
computational strategies based on the use of eigenstates
of the discrete Hamiltonian, to obtain solutions to the
equations derived in Sect. 2. In Sect. 4 we present results
of calculations for a one-dimensional box containing an
Eckart barrier, and in Sect. 5 we discuss our results.

2 Generalizations of the TIWSE

To derive a general TIWSE [7], we multiply the TDSE in
Eq. (1) by (d¢/2n#) exp(1Et /%) and integrate between two
finite times, #; and #, (where [f, #2] is the time interval for
the scattering experiment), so that

/ arewp ("3 ( Sy =) . ®

Then integrating the left-hand side by parts, we obtain

(E—H)%idtexp(%)
X {l — exp (—Z(E — H;(tz — tl))}

where from Eq. (2), we have
exp( ’1{’27) lz(#1)). We now define

€E) = 21h]dtexp<E)|y< 0. (10)

! =t—1t, as the
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X(tl» ) (9)
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and introduce the relative time,
integration variable to obtain

6B =5 / atexp ("))
x {exp(lb;;)u(t +zl)>} , (11)

where t = #, — ;. In terms of these quantities, Eq. (9)
becomes
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Finally, we note that without loss of generality we can
set 11 = 0 (since the factor exp (1£t;/h) only contributes
to the phase of the wavepacket at time #;, which is in any
case arbitrary). This leads to

(E — H)|E(E))
= [ (5 ron (13

where the subscript 7 in |&(E)) indicates the total
propagation time.

A few comments regarding this new TIWSE, i.e.,
Eq. (13), are now in order. First, it is clear from Eq.
(10) that (F|£,(E)) is the accumulation of the energy, E
component of the wavepacket at the point 7 over the
propagation time, t. Hence, at any point 7, the integral
in Eq. (10) converges (i.e., becomes independent of 1) if
at time 7 the packet has forever passed over the point 7.
Second, we note that in the limit 1 — 4oo, the coor-
dinate representation of the ket vector [exp(i(E — H)
t/ 1)|7(0))] must tend to zero at any finite 7, since the
kinetic energy operator will eventually propagate the
system away to infinity (provided the packet has zero
overlap with any bound states of the Hamiltonian; this
will always be true if the incident packet does not
overlap the interaction region). Thus, from Eq. (13), we
obtain

(E = H)|E(E)) = 5= 12(0)) (14)

in the limit as T — oo, which is the standard TIWSE
[7-11]. Hence, it is obvious that Eq. (14) is a special case
of Eq. (13). Third, it is clear that Eq. (13) permits more
general solutions than those provided by Eq. (10) (with
t; = 0 and #, = t as we have assumed) and these will be
discussed later.

The formal solution to Eq. (13) is

) = 5

<[r-ew (ET oy . a9

which is perfectly well behaved at all values of the
energy, E, and for all packets, including those with
bound state components. (That is, it does not give rise to
singularities at any value of the energy, E, as is clear
from a simple Taylor series expansion of the exponential
term. Thus, there is no need to introduce =ie to the
energy in order to ensure the existence of 1/(E — H).
This aspect will be illustrated in greater detail in the next
section.) Furthermore, since [5, 16]

TEiW(E-EH)[1_6Xp<ﬂé;%fgz>}__Giﬂg o (19)

m

where GT(E) and G (E) are the causal and anti-
causal Green functions, respectively, the expression
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= H {1 —exp( H)e } can clearly be treated as an

approximation to the causal (anti-causal) Green func-
tion for positive (negative) values of the finite propaga-
tion time, 7. Also, using Eq. (7), we note that the real
part of Eq. (16) satisfies

s el 1o (5

e a7

and the imaginary part of Eq. (16) satisfies

s {2 |1 o (557) ]}

. (E-H)t
— Sin
—lim—— T — _g5(E—H) . 1
T E—H o ) (18)

It is easy to verify [10] that 5= 6(E — H)y(0) is a solution
of the homogeneous TISE corresponding to evolution of
the packet x(0) from ¢ = —o0 to co.

3 Approximate solutions to the TIWSE

3.1 Finite-t, distributed approximating functional
and Chebychev approximations

In order to carry out calculations, we must evaluate the
actions of G*(E), G*(E) and 6(E — H) on an initial
wavepacket, |x(0)). From the previous discussion it is
clear that the action of these operators can be studied as
a function of the finite propagation time, 7; i.e.,
specifically

G'(E) ~ GI(E) EE%H (1 - exp@) . (19)
GP(E) ~ GP(E) = ﬁ <1 - cos@) (20)
and

S(E—H)mér(E—H)zn(El_H)sin(E_hH)f (21)

may be used to evolve an initial wavepacket and study
the behavior of the corresponding final states as
a function of 7. Additionally, we may also consider
approximating 6(FE — H) in terms of the distributed
approximating functionals (DAFs) [21-26]. For exam-
ple, the Hermite-DAF approximation to the SDO,
oy (E — H|o), is given by

0(E—H) =~ 6y (E— Hlo)

R _(E-H)
><ME”< Daela) e

H,(x), satisfy the
2nH,_(x) and

where the Hermite polynomials,
recursion relation H,,i(x) = 2xH,(x) —
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M and o are parameters whose choice determines how
accurately dy(E — H|o) approximates a Dirac delta
function. For fixed 6, M — oo produces the exact Dirac
delta function. Similar to the case where 6(E — H) is
approximated by a Chebychev expansion, this limit is
related to the limit that the propagation time tends to
infinity [10, 20]. However, the Hermite-DAF approxi-
mation to the Dirac delta function can also be viewed in
terms of the limit ¢ — 0 for fixed M. Similarly, this is an
alternative way to achieve the infinite-propagation-time
limit. In Sect. 4, we study this ‘evolution’, under the
action of dy(E — H|o), of an initial wavepacket as a
function of ¢ for fixed M. Using other DAFs [27-31], for
example the Gaussian—sinc-DAF operator [30], alter-
nate expressions for 6(E — H) can be obtained. Further,
if the Hamiltonian matrix is known to have symmetry,
this symmetry can be exploited by constructing a
representation for 6(E — H) using the symmetry-adapted
DAF [31]. Typical behavior of the energy-to-time
Fourier transform of the quantity oy (E|s) (i.e., the
corresponding time-domain filter) is presented in Fig. 1.
Clearly, this quantity is a good approximation to the
window function. Further, it may also be noted from
Fig. 1 that as the value of ¢ decreases, the width of the
window function increases, so a longer ‘propagation
time’ results for the function to which oy (E — H|o) is
applied. Hence, as discussed in greater detail in Sect. 4,
when the expression in Eq. (22) is applied on an initial
wavepacket, it has the effect of modifying the wavepac-
ket in the causal fashion when M is fixed and o is
reduced, i.e., the value of ¢ effectively correlates
inversely with the time elapsed in the scattering process,
just as the highest-degree Chebychev polynomial in
expanding §(E — H) correlates with the propagation
time [10, 20].

In all the previous expressions, i.e. Egs. (19)—(22), the
final state results from the action of a function of the
Hamiltonian on an initial wavepacket. This action may
be approximated in many ways. For example, one could
construct Chebychev polynomial approximations to
each of the operators in Egs. (19)—(22) [20, 32]. In this
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Fig. 1. Typical behavior of the Fourier transform of d,/(E — E'|0).
As o decreases, clearly the width of the square filter increases and,
hence, a greater time range of the function on which 6y (E — H|o) is
applied is retained

work we choose to resolve the initial wavepacket
in terms of eigenstates of the Hamiltonian, thereby
simplifying the procedure. That is,

1€/ (E)) = 3- G (B)|(0))
; Jmax 1
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where {E;, ¢;} is the set of eigenvalues and eigenvectors
of H and the values Jp;, and Jy, are to be chosen such
that the scattering energy, E, satisfies the ‘minimal
condition’ inequality E; . < E <E; . [Clearly, if the
range (E, . ,E; ) is increased to include the entire
spectrum of the finite, discrete approximation to the
Hamiltonian, all expressions on the right-hand side of
Eqgs. (23)—(26) attain their limiting values, which are still
not exact since the Hamiltonian has been discretized and
is finite-dimensional. However, in the limit of infinites-
imal discretization, i.e., the continuous limit, the sums
over j in the expressions become integrals and the
associated expressions are formally exact.] In the case of
the Hermite-DAF expression, Jni, and Jy.x will be
chosen such that £, and £, are relatively close to E,
owing to the Gaussian damping factor exp( (52_52)>
The expressions in Egs. (23)—(25) may, however, require
a larger spread of (E,,,Ey,,) owing to the oscillatory
nature of the (damped) trigonometric functions in-
volved.

Alternative approximate expressions for the causal,
particular and homogeneous solutions may be obtained
by using the well-known Chebychev expansions [8, 33,
34], namely,

exp|—

(26)
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where cos0 = Eporm and Enorm, Hporm and AH are the
normalized [8, 35] energy, the normalized finite matrix
representation of the Hamiltonian and its half-spectral
width, respectively. Note again that the value of the
highest-degree Chebychev polynomial is related to the
length of time one propagates y(0) in a time-dependent
approach [10, 20]. The Chebychev polynomials are
generated by the recursion relation [36]

Tn(Hnorm) = 2I—]noranflU_Inorm) - Tn72(Hnorm) ) (29)

where Ty(Hnorm) = 1 and T} (Hyorm) = Hnorm- The actions
of GY(E) and oy(E — H) on an initial wavepacket may
also be simplified by employing eigenstates of Hyorm.

It must be noted that all these expressions may be
employed directly only if the grid used for the scattering
variable is large enough to prevent the wavepacket from
reflecting off the ends of the grid. The results for smaller
grids are bound to be affected because of boundary re-
flections of the wavepacket [19, 37]. Such reflections can
be avoided by employing a Mandelshtam-Taylor dam-
ping scheme, which will now be discussed in more detail
[19, 37].

3.2 ‘Damped’ Hamiltonian approach
to ‘smoothed’ TIW propagation

In general all calculations are performed within a box
that contains the initial wavepacket and the potential.
Application of the expressions of Sect. 3.1 results in
propagation and eventual scattering of the initial
wavepacket off the target potential. If the size of the
box chosen is not ‘large enough’, the propagated waves
will reflect off the walls of the box and reenter the
scattering region to cause nonphysical interference
behavior. If the box is ‘large enough’, scattering will be
completed before the propagated waves reflect off the
boundaries and reliable scattering information may be
obtained. Further, since the box size affects the size
of the matrices involved, smaller boxes result in smaller
size matrices and hence shorter computation times.
To facilitate the use of smaller boxes, we employ a
Mandelshtam-Taylor scheme of damping the Hamilto-
nian matrix along the edges of the grid to reduce
boundary reflections [19, 37]. The coordinate represen-
tation for the new ‘damped Hamiltonian’, H =
S1/2HS'/2, is obtained using the diagonal (in the
coordinate representation) damping matrix, S'/2, whose
elements are equal to 1 at all points on the grid except
near the boundaries where they are gradually attenuated.
Damping is enforced only where the potential is zero,
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and hence the potential energy is not damped. A typical
form of (x;/S'/?|x;) which is used in the calculations
described later can be found in Fig. 2. (In a molecular
beam experiment, damping can be thought of as cooling
the system, so the beams, upon collision with the walls of
the experimental setup, lose kinetic energy to the cold
bath, condense on the walls of the chamber and do not
get reflected back to the scattering reglon ) The operator
§'/2 resembles a filter in many ways, since it retains only
the relevant portion of the Hamiltonian and, subse-
quently, the wavefunction.

The ‘damped Hamiltonian® may be used directly
in the expressions discussed in the previous section;
however, for the Chebychev-based approximations, as
was shown earlier [37], the Faber—Chebychev recursion
[37-39] associated with such a ‘damped Hamiltonian’,

Tn (]:Inorm) = 2I:]noran I(I:Inorm)

(Sl/z) n— Z(Hnorm) ) (30)

with Tp( nOrm) = 1land Ty ( norm) = Hyorm, yields appro-
priate damped basis vectors for expanding various
operators. This procedure [37] (of using the Faber—
Chebychev recursion to evaluate operator functions
of the damped Hamiltonian) is exactly equivalent to
Mandelshtam and Taylor’s implementation of the TIW
formalism [7-11] by constructing (E — H + €)' using
the known energy-dependent expansion coefficients [8,
33] but modifying the Chebychev recursion relation
through the introduction of a damping factor. The
procedure produces energy-independent basis vectors
that decay exponentially in the boundary region [19].
It is also possible to use eigenstates of the damped
Hamiltonian to evaluate expressions such as those
outlined in Sect. 3.1.

We consider the coordinate representation of the
action of a function of the damped Hamiltonian on one
of its eigenstates, i.e., f(H)|¢;). It can be arranged so
that

FU ) b)) = FUf(E))|d)) ~ FIf (H)] ) (31)
il 3\
0o | \
\
E o8f |
é 07 0” \5 R
é% 06 0’ \ 4
S |
8 os| ’ | |
04| 0’} \\
03| // \
02 : . . . L A\

50 100 150 200 250 300
Grid Points

Fig. 2. Example of distributed approximating functional (DAF)
damping matrix S'/2. The Hamiltonian is damped smoothly along
the edges of the grid for a box ranging from 1 to 327 grid points
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holds to controllable accuracy for all values of the
(discrete) position vector X =X;, where the damping-
matrix element [S!/ 2}4 .= 1. This is chosen to be the case

for the portion of the grld where the potential is nonzero,
plus a large enough region for the final state analysis, so
Eq. (31) is valid in the relevant scattering region. Thus,
we are careful that the final state analysis for calculating
various observables is also performed in a region which is
separate from the damping region, so Eq. (31) is valid in
this region of analysis as well. Hence the region of final
state analysis and the physical scattering region are
constrained not to overlap with the damping region,
through the Hamiltonian matrix, and as long as this
requirement is satisfied, Eq. (31) is valid.

The direct use of the damped Hamiltonian in the
expressions involving the Chebychev polynomials, leads
to Gibbs-phenomenon-like oscillations, which may be
filtered out by ‘smoothing’ the polynomial expansions
(by a process akin to low-pass filtering in digital signal
processing [41]). To smooth the Chebychev approxima-
tions, we employ the diagonal Fourier space form of
the DAF, which is known to be an arbitrarily accurate

low-pass filter, so
(no')?
2

()

where the value of ¢’ was chosen to be 0.0075, exactly as
in Ref. [37].

The various dynamical states, in the region where the
damping factor is 1, may then be expressed in terms of
the action of functlons of H on the initial wavepacket.
For example, we may obtain finite-t approximations to
the causal, particular and homogeneous solutions or
DAF approximation to 6(E — H) by using the eigen-
states of the damped Hamiltonian (), {E;, ¢;}, and the
‘smoothed” Hermite functions as

& (B)) = 2 G (E)|(0))

. .
S| (E—Ej)t

~— — (1 — -
2nAZE—E<< P )

J=Jmin
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A | (E—-E))t
~— — (1 —cos——2-
I (e

J=Jmin J

x ;) (¢,12(0))

Ve(E)) = 5-6.(E = ) [(0))
Jmax 1

1 .
~ — = S1n
2n o n(E — Ej) h

X |(}/><(}1|X(0)>

Tn (Ej,norm) = Tn (Ej,norm) exXp <_

(32)

(33)

(34)

and

|mmw»z§»ME—ﬁmuw»
ey [ (E-E)

E(miesh
X ;) (¢;12(0)), (36)

where, as in Sect. 3.1, we have resolved the action of the
relevant dynamical operators in terms of eigenstates
restricted to the range (Ej, ,E,, ). For the case of
the Chebychev approximations, the final states can be
expressed in terms of the action of T,,(Hporm) on |7(0))
(i.e., in terms of the ‘generalized scattering Krylov-like
basis’ {71,D- As in Egs. (30) and (31) we write the value
of |i,) on any grid point ¥;, where [Sl/zla o= Las

|1’],,> = (Hnorm)u( >>
= 2Hn0ran I(Hnorm)|X(0)>
(Sl/z) T, 2(Hnorm)|X(0)>

Jmax

=~ Z 2Ej7normfn—1(Ej,norm)|¢_/‘><¢_/|X(O)>

j:‘]min
Jmax .

— (SN Tra(Ejnom)|9,)(12(0))
J=Jmin

with [ijp) = |%(0)) and |7;) = Hnomm|%(0)). The particular
and homogeneous solutions to the TIWSE in the region
devoid of damping are then given by

E(E)) = 5- GR(E)|(0))
1 2(2 — Opp) Sin nd )

22

(37)

T 2mAHZ  sind (38)
and
1
[W(E)) = 5_0n(E — H)[x(0))
(2 — 0p0) cosnl
271AHZ nsin 0 1n) (39)

where we have made use of the fact that the ‘Chebychev
polynomials’ are given by [36] T,(x) = cos(ncos™'x),
and the angle 0 is defined as in the previous section, i.e.,
€08 0 = Enorm. Note that strictly speaking, i,(X) = <x|11n>
are not polynomials 0w1ng to the damping. Again,
however, the damping region can be controlled so that
Eq. (31) holds to the desired accuracy, justifying the use
of Egs. (38) and (39) prior to the damping region.

Clearly, there is a great variety of ways to generate
scattering-type states, from which scattering information
can be extracted.

3.3 Approximate scattering solutions at eigenvalues of H

It is interesting to note what happens to the expressions
outlined previously when the continuous variable, E, is



exactly equal to one of the eigenvalues, E;, of the
discrete Hamiltonian matrix. When E = Ej, Egs. (38)
and (39), clearly, do not change. The expressions in
Eqgs. (24) and (25) (or, alternatively, Eqgs. 34, 35),
however, are functions of 1/(E — Ej), which is singular
at £ = Ey. This singularity, however, can be eliminated
explicitly and we obtain

1

EP(Ex)) = o Gy (Ev)[2(0))

o 1 1 (Ek — Ej)’[

_ﬂ;Ek—EJ- (l—cos—h )

X |$,)(,12(0)) (40)

and
Vo(E0) = 5-0:(Ex = H)[2(0))

_ L 1 - (Ex — Ej)t

- Zn; T sin p

< (DD 120) + 3= 1B (Bel(0)) . (1)

Using Egs. (40) and (41) in Eq. (7), we obtain
1

1€ () = 5 G (Ex)[1(0))
1 1 1(Ey —Ej)ﬂ:
= — — — 1 — _—
zn;Ek 2 { exp

< 9 (B120)) + 51Dl - (42)

Similarly, using E = E; in Eq. (36), along with the
analytical expression H,,(0) = (—1)"2"(2n — 1)!! [36], we
obtain an expression for the DAF approximation to
[6(Ex — H|o)2(0))] as

Vaeo(Ex) = 5-0u(Ex — Hlo) 7(0))

R (Ex — E))°
_277,' anzexp< 202

Jk

M/2 n - =
N1 E, —E;

E ——| = H,, J
xn:() ( 4> n! 2( 20 >

0
X i) (el 2(0)) - (43)

We note that all these expressions are perfectly well
behaved and finite. In the case of Chebychev expansions
this reflects the fact that the usual e — 04 limit, to select
causal (anticausal) behavior, has been analytically
carried out in obtaining the Chebychev expansion
coefficients. In the case of Eqgs. (40)—(42), the use of a
finite-t expression ensures that no singular behavior was
ever introduced.
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Finally, in the DAF expression, Eq. (43), the trun-
cation of the Hermite sum, and the use of a finite width,
o, ensures a well-behaved approximation to the Dirac
delta function.

The ability of the expressions studied here to yield
correct results at any energy well within the eigenvalue
range of the Hamiltonian contrasts with the ‘R’-matrix
theory of nuclear reactions [16, 5, 40]. In that approach,
one also diagonalizes the Hamiltonian inside a box but
the expression used for the Green function is singular at
the eigenenergies of the Hamiltonian.

4 Some illustrative computational tests and results

Our aim is twofold. First we evaluate the accuracy of the
expressions derived in Sect. 3.1. We then assess the
computational gains afforded by the use of damping and
smoothing. For computational convenience, we consider
a one-dimensional scattering problem of a wavepacket
scattering off an Eckart barrier. The initial wavepacket is
propagated inside a box using the various expressions
derived here, which leads to the interaction and subse-
quent scattering of the wavepacket off the Eckart barrier
potential. The ‘final states’ thus obtained are analyzed
(using an analysis scheme outlined later in this section)
to arrive at the transmission and reflection coefficients.
Since the transmission and reflection coefficients across
an Eckart barrier can be determined analytically [42] for
any arbitrary energy of an incident plane wave, they are
convenient for validating our results. The importance of
damping and smoothing is studied by considering the
effect on accuracy of varying the ‘damped-box’ size.

The discrete approximate representation for the ki-
netic energy part of the one-dimensional-box Hamilto-
nian is obtained on a uniform finite Cartesian grid using
the DAFs [21-26]. (This is efficient because the DAF
representation provides a highly banded, Toeplitz
structure for the kinetic energy matrix.) The full Ham-
iltonian matrix then takes the form

2
WA exp  (xy —;j)
4v/2mmao} 20}

M2 \"1 Xy —X;
—2) =, J J
<3 (4 e (U)
)
oo ()

where the first term is the kinetic energy written using
the ‘second differentiating Hermite-DAF’ and the
second term is the (local) Eckart potential [42]. The
{x;} are grid points in the one-dimensional box with
uniform grid spacing, Ax, gy is a width parameter
associated with the Gaussian weight for the DAF kinetic
energy, Hy,+» is a Hermite polynomial of degree (2n + 2)
and (M +2) is the highest degree of the Hermite
polynomial used. The values for the parameters in the
DAF (i.e., M and ¢/Ax, as shown in Table 1) were
chosen as in earlier studies to ensure that both the
wavefunction and its second derivative were accurately

H(xy,x;) =
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Table 1. Parameters used for the Hamiltonian matrix

Distributed approximating
functional parameters

Eckart potential parameters

M VO Xy a

I Bfa

50 60 0.028215 au 0.0 A

calculated [7, 8]. For the Eckart potential, x, is the center
of the potential, a is its width parameter and ¥} is the
maximum height of the Eckart barrier. All parameter
values are given in Table 1.

4.1 The final state analysis

To obtain the transmission and reflection coefficients
from the final propagated states, we sketch here a final
state analysis specific to the present application. A more
general and detailed treatment may be found elsewhere
[37].

It is known that, by using a large enough region so
that reflection at the walls does not occur [7-11] or by
appropriately using absorbing boundary conditions [43—
45], the solution (on the target side of the initial wave-
packet) generated by the TIW approach is rigorously
proportional to the LS causal solution. In the case of a
finite box size, the final states obtained from the TIW
analysis in the interior region where (x|y(0)) vanishes
can be expressed as

1€) = G(E)[2(0)) = Ali,) + Bl Y,) (45)

where [y1,) and |y7,) are causal LS wave states with
positive and negative momenta. Given appropriate
values of 4 and B, the ket vector |£) may represent any
of the expressions presented in Sect. 3. Since, in the
one-dimensional case, it is arbitrary which side of the
potential the initial wavepacket is on, further analysis in
this section will assume it to be on the left. Further, due
to the symmetry of the Eckart potential, the coefficient
of reflection for the wave with positive momentum is the
same as that for the wave with negative momentum.
Hence, for a point x;, located to the right (r) of the
target,

(xe[ ) = Texp(ih) (46)
(xe[Ty) = exp(—ikxr) + Rexp(ikx:) (47)

where T and R represent the transmission and reflection
coefficients. Similarly, for a point x; in the region
between the initial wavepacket and the target

(i) = exp(thn) + Rexp(—ikx) | (48)
(=) = Texp(—tkn) . (49)

To obtain T and R, we consider two points to the right
of the potential (say, x;; and x) and two points
between the initial wavepacket and the potential (say,
xi1 and xp), where the final states are calculated (using
the various expressions presented in the previous
section). This leads to

o Aa1 - Baz

R=—p—p - (50)
a) — AR
T==—— (51)
where
_ (u|G(E)[2(0)) exp(—thxin) — (x| G(E)[1(0)) exp(— ki)
exp(—2tkxyy ) — exp(—2tkxpp) ’
_ (| G(E)|%(0)) exp(thor1 ) — (xe2| G(E)[1(0)) exp(thxr)
exp(2tkx;1) — exp(2tkxyo) ’
4 = L G(E)|2(0)) exp (i) — (x| G(E)|£(0)) exp (thoiz)
exp(2tkxyy) — exp(2ikxp) ’
4 (50 [GUE)£(0)) exp(— k) — (50l GUE)|1(0)) exp(—thes)

exp(—2tkx;1) — exp(—2tkxs)

4.2 Results for the large box (box 1)

To demonstrate the validity of the expressions in
Egs. (33)—-(36), (38) and (39), the box size was first set
at a large enough value that reflection of the wavefunc-
tion at the boundary was negligible (see box 1 in Table 2).
Hence damping was not required and S'/2 was set to the
identity matrix. The Eckart barrier was centered in the
middle of the box, with its width chosen so that it was
effectively nonzero over a small region in the box (Table
2). The initial wavepacket was chosen to be a moving
Gaussian wavepacket with width o, average momentum
kave and centered at the point x, i.e.,

1200) = Aenp (=53 explber) . (52)
(;Oﬁ 20’0
The specific values chosen may be found in Table 2.

The undamped Hamiltonian matrix was diagonalized
using a routine in LAPACK [46]. The banded, Toeplitz
nature of the DAF-represented Hamiltonian made this
calculation relatively easy. The resulting eigenstates were
used as discussed previously, and the relevant TIW
states were calculated at four points, as outlined earlier,
to obtain the transmission and reflection coefficients
for a wide range of energies, both above and below
the barrier height, including a few exactly equal to the
eigenvalues of the box Hamiltonian. Typical results
for these calculations compared with the respective
analytical values are presented in Table 3.

For the Chebychev expansions, the values of 7" and
R were calculated as a function of the number of terms,
N, included in the polynomial expansion. A typical
behavior is shown in Fig. 3. The unitarity (or the
conservation of flux) condition, |T|*+ |R|* =1, was
conserved only in the stable plateau region, and the
values in this region were found to be in good agree-
ment with the exact values in Table 3. On further in-
creasing the number of Chebychev terms, the plateau
disappeared and the behavior was oscillatory from then
on owing to reflections from the boundaries reaching
back to the final state analysis points. It was also in-
teresting to note that the plateau for the transmission
coefficient always lasted longer than the plateau for the




Table 2. Box sizes and related
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parameters Box 1 Box 2 Box 3 Box 4
Box Size 600 A . 185 A ) 130.0 A . 130.0 A .
Box range —300 to 300 A -92.5t0 925 A —65.2 to 65.2 A —-65.210 652 A
Ax? 0.4 A 04 A 0.4 A 0.4 A
NP 1501 . 463 . 326 . 326 .
Potential range -24.8 t0 24.8 A -24.8 t0 24.8 A —24.8 to 24.8 A -248t0 24.8 A
#Grid spacing X0¢ -1852 A —55.30 A -28.0 A 0.0 A
Number of points on the grid oo¢ 6.0 A 1.0 A - -
¢Initial wavepacket parameters. Kave® 0.1732 0.1732 —d . —d .
See Eq. (52) x0° -25.6 A -25.6 A -25.6 A -25.6 A
Ir111t1al wavepackdet nonzero xl;e —26.4 A —26.4 A -26.4 A —26.4 A
only over one gri Xe1© +25.6 A +25.6 A +25.6 A +25.6 A
- Final state analysis points i +26.4 A +264 A +26.4 A +26.4 A
Number of damping points on Ramp” — 7 90 90
grid
Table 3. Results for box 1 ) . . L. .
Energy Exact® Chebychev expansions oym(E — Hlo) Finite-t expansions
G'(E) G°(E) O(E-H) G'(E) G'(E) &(E - H)
0.012° T 0.166 0.166 0.166 0.166 0.167 0.167 - -
R 083 0833 0833 0.833 0.834 0.833 - -
0.024° T 0559 0559 0559  0.559 0.559 0.559  0.559 0.559
R 0441 0441 0441  0.441 0.441 0.438  0.438 0438
0.036° T> 0838 0838 0838 0838 0.838 0.840  0.838 0.838
> 0162 0.162 0.162 0.162 0.162 0.165 0.160 0.160
0.048° IT> 0944 0944 0944 0.944 0.944 0.946  0.946 0.946
[ 0.0558 0.0558 0.0558 0.0558 0.0558 0.0565 0.0565 0.0565
0.060° T> 0980 0978 0980  0.980 0.980 0.980  0.980 0.980
[R> 0.0204 0.0203 0.0200 0.0205 0.0205 0.0208 0.0208 0.0208
0.008902° |T]> 0.0959 0.0959 0.0959 0.0959 0.0960 0.0959 0.0959 0.0959
R 0904 0904 0904 0.904 0.905 0.904  0.904 0.904
0.019991° |T]> 0414 0423 0423 0.423 0.423 0.420 0421 0419
R> 0.586 0.576  0.576  0.576 0.577 0.581  0.577 0.577
) ) 0.031193¢ |T]> 0.753 0.753  0.753  0.753 0.753 0.753  0.753  0.753
* Values obtianed from R> 0247 0247 0247 0.247 0.0247 0.247  0.247  0.0247
analytically exact expressions 0.044867° |T]> 0927 0929 0.929  0.929 0.927 0.929 0929 0.929
Energies not eigenvalues of IR>  0.0735 0.0736 0.0735 0.0735 0.0735 0.0735 0.0735 0.0735
g—lamlltpman . 0.055357° |T]> 0970 0971 0970  0.970 0.970 0970  0.972 0.970
Energies are eigenvalues of [R>  0.0299 0.0300 0.0299 0.0299 0.0298 0.0300 0.0299 0.0300
Hamiltonian
: _ : reflection coefficient (Fig. 3). This was a direct reflec-
ITI e . . .
o A 1 tion of the fact that boundary reflections arrive on the

1 L
1000 1500 2000
Number of Chebychev Polynomials

IR|* and |T|* + |R|* as functions of the number

Fig. 3. Plot of |T)?,
of Chebychev polynomials for the case of the GP(E) in box 1, for
energy equal to 0.030. Note the plateau around the range, 10007
1500 Chebychev polynomials. Also note the plateau for |T \ (solid
line) lasts slightly long than that for |R|* and |T|* + |R|*. See text for
details

reflection side earlier than the transmission side, since
the initial wavepacket was on the reflection side. (This
also reflects the direct relationship between propagation
time and order of Chebychev polynomlals noted else-
where [37].) The finite-t expressions were studied as
functions of 7. At low t, the behavior was random but
at larger values of 7, the transmission and reflection
coefficients were found to exhibit regular oscillatory
behavior (as seen in Fig. 4). The oscillations are
damped with increasing values of 7 and an average of
the 7 and R values in this regular oscillatory region
provides an estimate for the magnitude of the trans-
mission and reflection coefficients which is in satisfac-
tory agreement with the exact values, as seen in Table
3. Further, the unitarity condition was satisfied only in
the regular oscillatory region and the more regular
oscillations occur at smaller values of t for the larger
energies. This is due to the higher-energy components
completing the collision process in a smaller propaga-
tion time (7). The DAF representation for the spectral



Fig. 4. Plot of |T)%, |R|* and |T|* + |R|* as functions of t for the
finite-t representation of G*(E) in box 1, energy equal to 0.012.
Note the regular oscillatory region around the range 4000-7000
units on the 7 axis

density operator, i.e., oy (E — H|o), was studied as a
function of the parameter o, with the value of M being
fixed at 60. A stable plateau was attained for all energy
values. The position of the plateau shifted as a function
of energy, with higher energies producing a plateau at
higher ¢ values. This reflects the inverse relationship
between the required propagation time and the value of
g, as noted in Sect. 3.1, using Fig. 1.

For all the calculations described previously, it was
found that fewer than one-tenth of the eigenstates of the
Hamiltonian were necessary at most scattering energies.
The only exception to this was found to be the Cheby-
chev-based approximations. Here the extremely low
energy behavior was found to be oscillatory and un-
stable when fewer than one-tenth of the eigenstates were
used, but stable when a larger number of eigenstates
were used. The DAF approximation did not encounter
this problem and gave rise to stable plateaus even at
extremely low energies when fewer than one-tenth of the
eigenstates were used. This difference in behavior is due
to the fundamental difference between a DAF repre-
sentation and the usual standard basis set expansion
[47], of which the Chebychev polynomial approxima-
tion, considered earlier, is a very good example. While
the leading error to a truncated Chebychev approxi-
mation of order N is a polynomial of order N + 1, which
is oscillatory, this is not the case for the DAF expansion.
The DAF approximation to a wide class of functions
has been proved [47] to exhibit uniform convergence.
This is unlike a standard basis set expansion approxi-
mation to a function which converges in the sense of the
norm of the difference between the function and its
approximation in the complete domain of definition of
the function.

The fact that only a small number of eigenstates are
necessary for these methods to yield reliable results is
very interesting, since iterative techniques [7, 48—56] can
be used to obtain a selected range of eigenstates. These
methods have the advantage that the computational ef-
fort required scales linearly with system size (as opposed

to the slow N3 scaling of the standard eigenvalue solv-
ers). In the present case, however, the lower dimensio-
nality and the banded, Toeplitz nature of the DAF
makes direct diagonalization feasible. For larger di-
mensional problems, however, iterative diagonalization
should be the method of choice.

Having found all expressions to yield satisfactory re-
sults with the initial wavepacket on one side of the bar-
rier, it was decided to place the initial wavepacket directly
on top of the Eckart potential. (This, as will be seen in the
next section, leads to an important consideration for box-
size reduction, since if the initial wavepacket can be ac-
commodated on top of the barrier and stable solutions
obtained, the box size could be further reduced, hence
reducing the size of the associated matrices involved.) It
was found that the DAF expression gave an extremely
stable plateau at all energies. The Chebychev and finite-t
expressions for 6(E — H), while yielding reasonably sta-
ble behavior, were not as stable as the results obtained
using the DAF expression. Additionally, at lower ener-
gies the Chebychev and finite-t expressions required a
larger number of eigenstates to provide a reasonably
stable plateau (as seen in the case with the initial wave-
packet outside the barrier). Approximations to G*(E)
and G'(E) produced unstable results when the initial
wavepacket was placed on top of the barrier.

We next carried out calculations for smaller box sizes
in order to test the robustness of the approach. In the
rest of this section, we consider the effect of reduction in
box size on accuracy.

4.3 Results of calculations for smaller boxes
(boxes 2, 3, 4): test of computational robustness

For smaller boxes, the plateaus typically were not stable
and well-defined owing to multiple reflections caused by
the boundaries. Hence, the Hamiltonian was damped and
the polynomial expansions were smoothed, as discussed
earlier. The diagonal-damping matrix, S'/2, was defined
to be equal to a damping function, £, close to the edges of
the grid (over ngamp grid points). Various damping
functions were considered. The DAF damping (Fig. 2)
using the diagonal Fourier space form of DAF, i.e.,

f(i)—exp{;{“’@%n:—l)r}
Mo 3i *

for the grid point i=1,... ngamp (With ¢’ =2.5 and
M = 60) and the square root of a cosine function (i.e.,
. n(i—1
f) = \/cos(iz(n;jmp)l)
hence these are used for the calculations reported herein.
The DAF was also used to smooth the polynomial
expansions, as outlined earlier. The introduction of dam-
ping and smoothing produced stable plateaus for the
DAF and Chebychev expressions and greatly improved
the results obtained for the finite-t expressions.

(53)

— %)) were found to work best and



In the case of the Chebychev expansion, both the
standard Chebychev recursion, Eq. (29), and the
damped Faber—Chebychev recursion, Eq. (30), were
tested. In box 2 both expressions lead to stable plateaus
for all energies (including those that were exactly equal
to the eigenvalues of the damped Hamiltonian) when
the entire eigenspectrum of the Hamiltonian was used;
however, as in box 1, when less than one-tenth of the
eigenstates were used, the behavior was unstable for the
lower energies. (Since the results for box 2 are similar to
those obtained for box 1, we do not present them here.)
For energies where a stable plateau was obtained, the
width of the plateau was found to be smaller in box 2
than in box 1, but a smaller number of Chebychev
terms were required to attain the plateau. This was
simply due to a smaller box requiring a shorter time of
propagation.

The DAF expansion, when used in box 2, yielded
stable plateaus (for all energies) at ¢ values larger than
those for which plateaus were obtained for box 1. This
again reflects an inverse relationship between time of
propagation and ¢. Similarly, the t expressions yielded
regular oscillatory behavior at smaller values of 1.

These results encouraged us to reduce the box size
further. Although several smaller boxes were studied,
only the results for two such boxes are presented here
(see boxes 3, 4 in Table 2). In box 3, the width of the
initial wavepacket was reduced to one point and placed
to the left of the barrier. The number of points in the
damping region was increased to account for the greater
reflection produced by the smaller box size and the
smoothing constant ¢’ (in Eq. 32) was reduced to 0.0050
to provide greater filtering of the high-frequency noise
produced by boundary reflections (Table 2). In addition,
since the DAF representation of the kinetic energy op-
erator in Eq. (44) ensured that the Hamiltonian was
nonlocal to a maximum of 30 grid points, close to 30
grid points were maintained between the region of final
state analysis and the damping region. This ensured that
the Hamiltonian did not couple the final state analysis
region with the damping region, and Eq. (31) was valid
in all physical space. This resulted in stable plateaus for
the DAF (Fig. 5) and Chebychev expansions (results for
box 3 may be found in Table 4).

Next, the same initial wavepacket (nonzero at just
one point, as in the case of box 3) was moved to the
center of the Eckart barrier and the results were studied
(box 4 in Table 2). Only the DAF and Chebychev ap-
proximations to the spectral density operator provided
stable results (Figs. 6, 7). (Some of these results were
even better than the ones obtained in box 3, i.e., with the
initial wavepacket outside the barrier; Table 4). The
GP(E) expression was found to give qualitatively correct
results only at energies above the barrier height, but the
results in this case were not as accurate as those obtained
using the expressions for the SDO.

5 Discussion

In this article we have considered various approximate
solutions to the TIW, definite-energy Schrédinger equa-

0 L I
0.004 0.005 0.006 0.007 0.008 0.009 0.01 0.011 0.012

o

Fig. 5. Plot of |T|*, |R|* and |T|* + |R|* as functions of ¢ for the
case of the DAF representation of the spectral density operator
(SDO) in box 3, for energy equal to 0.036. Note the stable plateau
around the range 0.0075-0.01 units on the ¢ axis

tion. It is seen that a variety of functions can be defined
and computed in order to obtain quantum scattering
information. For example, Chebychev expansions of the
infinite-t causal, particular and homogeneous solutions
can be constructed. Alternatively, one may also develop
approximations to the homogeneous solution of the
T — oo TIW equation by approximating 6(E — H).
An especially promising approximation is the DAF,
0sm(E —H) [21]. Finite-t propagation of an initial
wavepacket can also be carried out; in this case the
scattering process is studied as a function of the
propagation time, t. In all cases, the calculation
strategies revolve around being able to calculate analyt-
ically the dependence on the scattering energy, E. This
leads to efficient methods for computing scattering
information at many energies.

All approximations studied here are made computa-
tionally robust and reliable by the introduction of
damping and smoothing to facilitate smaller and more
compact grids. The damped Hamiltonian approach may
be used in conjunction with any of the approximations
to the causal, particular or homogeneous solutions.

An important computational strategy that was used
to test the various alternative schemes was the inclusion
of only a fraction of the eigenstates of the discrete
Hamiltonian matrix in an approximate resolution of the
identity to evaluate the various TIW functions. It was
found that to obtain scattering information at any en-
ergy, only a window of eigenstates around the scattering
energy was required. This is particularly interesting since
any of the novel iterative eigensolvers based on the
Arnoldi/Lanczos idea [7, 48-56] can be used for this
purpose. Of particular interest will be those that can be
used to obtain accurate interior eigenstates [53]. It is also
interesting to note the computational gains that may be
afforded by the use of such iterative eigensolvers. For
example, in box 1 a standard Chebychev propagation
would require at least 1000 Chebychev vectors (i.e., 1000
matrix vector multiplies) to reach the base of the stable
plateau. The iterative solvers would require roughly 200
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Table 4. Boxes 3 and 4

Energy Exact Chebychev Distributed approximating
expansions functional expansions
G (E) G"(B)* NE-H)'  SE-H"  Ou(E-Ho) y(E~ Hlo)
0.012¢ Valk 0.166° 0.157 0.131 0.169 0.162 0.159 0.168
R 0.834 0.877 0.869 0.831 0.838 0.841 0.831
0.024¢ |T|2 0.559 0.539 0.574 0.534 0.540 0.550 0.558
R]? 0.441 0.458 0.426 0.466 0.460 0.450 0.440
0.036° Valk 0.838 0.839 0.840 0.839 0.839 0.838 0.838
[R]? 0.162 0.161 0.160 0.161 0.161 0.162 0.161
0.048° Valk 0.944 0.947 0.947 0.947 0.947 0.940 0.944
R]? 0.0558 0.0529 0.0531 0.0530 0.0532 0.0595 0.0556
0.060° Falk 0.980 0.981 0.981 0.981 0.981 0.980 0.973
R]? 0.0204 0.0186 0.0186 0.0186 0.0186 0.0198 0.0261
0.013033¢ Valk 0.195 0.196 0.206 0.167 0.183 0.199 0.197
R]? 0.805 0.830 0.794 0.833 0.817 0.801 0.803
0.020164¢ Falk 0.429 0.399 0.307 0.404 0.398 0.425 0.428
R]? 0.571 0.595 0.693 0.596 0.602 0.575 0.572
0.028754¢ Valk 0.696 0.690 0.689 0.682 0.686 0.685 0.690
R]? 0.304 0.312 0.311 0.318 0.314 0.315 0.304
0.038772¢ Falks 0.874 0.876 0.875 0.877 0.875 0.877 0.875
R]? 0.126 0.125 0.125 0.123 0.125 0.123 0.125
0.050187¢ Falk 0.954 0.956 0.956 0.956 0.956 0.954 0.953
R]? 0.0462 0.0436 0.0437 0.0436 0.0436 0.0457 0.0476
4Box 3
®Box 4
Energies not eigenvalues of Hamiltonian
9 Energies are eigenvalues of Hamiltonian
T T T T T T T 2
e T

0.012

Fig. 6. Plot of |T|*, |R|* and |T|* + |R|* as functions of ¢ for the
case of the DAF representation of the SDO in box 4, for energy
equal to 0.030. Note the stable plateau around 0.01 units on the ¢
axis

vectors (each generated from a matrix vector multiply)
to obtain the window of eigenstates. Once this subset of
eigenstates is obtained, it can be used to perform cal-
culations at scattering energies close to the center of the
window. This could lead to a computationally viable
scheme for higher-dimensional systems and should be
further explored.

Approximating the SDO using the Hermite-DAF
leads to interesting results. Since the DAF is not a
standard basis set expansion [21, 47], it has properties

T F IR =

[ 500 1000 1500 2000
Number of Chebychev Polynomials

Fig. 7. Plot of |T|%, |R\2 and \T\z + |R|? as functions of the number
of Chebychev polynomials for the case of 6(E — H) in box 4, for
energy equal to 0.030. Note the stable plateau beyond 1000
Chebychev polynomials

that differ, for example, from the Chebychev expansion.
Of particular interest is the fact that the truncation error
is not a higher-order polynomial for the DAF (as it is for
the standard Chebychev expansion or for any other
similar basis set expansion). The effect of this was seen
clearly for box 1 when no smoothing was used. At low
energies, the Chebychev polynomial expansion was
found to be unstable when only a small fraction of the
eigenstates were used, but became stable when a larger
number of eigenstates were used. The DAF, on the other



hand, provided suitable results at all energies, always
requiring only a small fraction of the eigenstates. The
use of other DAFs, like the Gaussian—-DAF-sinc oper-
ator [30], the Lagrange DAF [27-29] or the symmetry—
adapted DAF (when the Hamiltonian has symmetry,
which can be exploited to reduce its size) [31], may
provide alternative, viable methods to evaluate scatter-
ing information.

It is also shown that all the approximations studied
here are well behaved at all energies, including those
equal to the exact eigenvalues of the finite-matrix
Hamiltonian. This is very interesting, since there exists
another approach, known as ‘R’-matrix theory, which is
also based on diagonalization of the Hamiltonian;
however, this method leads to a singular Green function
at the eigenenergies of the Hamiltonian. This does not
occur in the present approach since the correct limit
of e — 0. (to select causal or anticausal behavior) is
implicit in all the expressions studied here.
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